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NOMENCLATURE 
space between disks ; 
coefficients in the expansions of the eigen- 
functions ; 
defined in equation (3); 

c/@/2) ; 
defined in equation (18) ; 
specific heat at constant pressure ; 
eccentricity ; 
eh ; 
Eckert number, U,$C,AT; 
the scale factors defined in equation (2); 
heat conductivity ; 
values of x1 at inlet and outlet radii ; 
a positive integer ; 
local and average Nusselt numbers ; 
PC&t number ; 
~elogAW(k, - k,) ; 
heat transfer ; 
radius of the disk ; 
r,i(W); 
r,/(W); 
a function of x2 only, equation (13); 
temperature ; 
reference velocity ; 
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VI, v2, velocity components in the x1- and xq- 
directions ; 

Xl, x2., x3, bipolar coordinate frame ; 
- - 

x;, X2, x3; definedinequations(lO)and(ll): 

x defined in equation (19); 
Z a function of Z3 only, equation (13). 

Greek letters 
dynamic viscosity ; 
density ; 
ri/re ; 
e/u - 7); 
eigenvalues ; 
cc - m-L - To). 

i, e and w refer to conditions at inlet, exit 
and wall respectively. 

ANALYSIS 
THE BNRGY equation for the laminar, creeping flow of 

incompressible fluids between parallel circular disks with 
eccentric inlet (see Fig. 1) can be written, in bipolar co- 
ordinates, as 

=kg (1) 
3 

subject to the boundary conditions : 

Tb,, ~2, b/2) = T(x,, ~2, -b/2) = T, 
T(x,, ki, x;) = T,. 

The viscous dissipation terms are neglected, which is 
justified for small Eckert numbers, i.e. E( = Uz jC,,AT)* 1. 
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FIG. 1. Bipolar coordinates and the disks. 

The conduction in x1- and Ye- directions are neglected in 

comparison with conduction in the x,-direction. Also, the 

entrance effect can be neglected due to the extremely small 

clearance between the disks in such problems. The scale 

factors, h, and h,, of the bipolar coordinates are delined by : 

h,=h2=h= 
C 

cash x2 - cos x, 
(2) 

The coordinate plane, xg = 0, is parallel to and midway 

between the disk surfaces. The constant C is related to the 

inner and outer radii. r, and P,, and the eccentricity e, 

through the relation : 

C = r, sinh k, = re sinh k, (3) 

1 y(l + 62) + (1 - f#J? 
ki = cash-’ - 

24 
(4) 

7 

k, = cosh-“r(l - P) + (1 + rP) 

24 
(5) 

with 

6) 

where Z = e/r,. 

It was shown by Cairns et al. [1] that for this problem 

the velocity components v, and u2 can be written as : 

I?, = 0 (7) 

and 

o2 = (cash iz - cos x1)----- 

By substituting the velocities from equations (7) and (8) into 

the energy equation, equation (1) we get :* 

Introducing the transformation 

x; = x2 - k,, 

c 

‘=(b/2)’ 
p 

e 

and 

7’ 1 

X2 = - I 

E2 dy2 
-- 

[cosh(y, + ki) - COSX,]~’ 
0 

Equation (9) becomes 

a28 _ 
- - Pe(l - r;,;. 
ax: - 

-1 < I, < 1. xz > 0 
z 

(9) 

(10) 

(11) 

(12) 

subject to the boundary conditions : 

Y,=O: Q=l; x3= +l: u=o. _ 

Since equation (12) is linear, we assume a solution as: 

0(?,, x3 = R(E,)Z(R,). (13) 

By using the technique of separation of variables, equation 

(13) is substituted into equation (12) and we get: 

where 1’ is an arbitrary constant. The first equation in 

equation (14) gives the general solution : 

(151 

where C, is a constant to be determined by the boundary 
condition 0 (0, Z,) = 1 and the eigenvalue 1’. The second 
equation from equation (14) is : 

z” + 1.2(1 - n:, z = 0 
subject to the boundary conditions : Z( + 1) = 0. 

116) 

* cash x2. - cosxr # 0 since cash xz > cos x1 for the 

region 0 < x1 < 21~ and 0 i k. $ x2 Q k,, in this problem. 
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Equation (16) which constitutes a Sturm-Lieuville eigen- 
value problem, is solved approximately by the well-known 
Galerkin’s method [2]. It is then combined with equation 
(15) to give the solution of equation (12) as 

where Ci and 4 are given by : 
I. 

c 81. =i 
C.=‘” 

b,i 

II 2n - 1 

and 
N 

c hi 2n - 1 

x= 
“=I (2ncos2=gs 

N 

c 

b,i 
(2n - 1) 

“=I 

(17) 

(18) 

(19) 

respectively. Also, Li and bai are the eigenvalue and the 
coefficients in the expansion of the eigenfunction respec- 
tively. Fifteen sets of values are computed in the numerical 
solution given below. 

NUI@ERICAL SOLUTIONS AND DISCUSSIONS 

The heat transfer is defined as 

k(T, - T,) 80 
=- bi2 0 dx, 5J= 1 = UT, - TJ (20) 

Thus, the local Nusselt number is given by : 

m=* 
(21) 

The average Nusselt number can be obtained by inte- 
grating over the disk surface, i.e. 

*nx*. 
1 

= x(fe* - ii2) ss 
NIA,~ dPI dx,. (22) 

0 0 

Substituting N&r from equation (21) into equation (22), 
we get : 

2n N 

xii= 1 

n(ie2 - Fi*) 
Cl i-1 

x ~xP(-$$+@.~2x(-l)m}dx,. (23) 
ol=1 

The evaluation of the upper limit in the integration of 
dg, in equation (22), X,,, is given in detail in Appendix I. 

Figures 2 and 3 are plots of the average Nusselt number as 
a function of Z and y fo Fi = 50 and Pe = 5000 and 20000, 
respectively. It is seen that in general the heat transfer is 
decreased if the inlet is eccentric, as compared with the heat 
transfer with concentric inlet under the same conditions. 
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FIG. 2. Average Nusselt number vs. y (Pe = 5000). 

The curves in Figs. 2 and 3 labeled e = 0, are for concentric 
inlet. Based on these figures, the following becomes apparent : 
1. For a fixed eccentricity, e, and exit radius, rc, increasing 

the inlet radius, ri, will decrease the parameter g and 
increase the parameter y. The average Nusselt number is 
thus increased. 

2. For a pair of disks with fixed inlet and outlet radii, ri 

and rer the heat transfer is decreased if the eccentricity is 
increased. 

3. For a pair of disks with fued inlet radius, ri, and eccen- 
tricity, e, the averaged Nusselt number is increased if the 
outlet radius r. is decreased. 

4. As y is decreased, the curves approach to the concentric 
inlet curve. Since y is the ratio of r, to r, this means that 
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the effect of eccentricity is reduced by either drilling a 
smaller hole or increasing the outlet radius. 

5. The average Nusselt number is decreased for smaller 
Ptcltt numbers, which is physically reasonable since a 
smaller P&cl& number means a larger thermal conduc- 
tivity. For the same temperature difference, a decrease 
in heat transfer is expected. 
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FIG. 3. Average Nusselt number vs. y (Pe = 2 x 10’). 
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APPENDIX 1 
Evaluation of xzc 

The upper limit in the integration of d%, in equation (22). 
jz,,, can be obtained as follows: Integrating equation (11) 

we get : 

1 1 - e’~cosx, _ -._-- 
X(k,) 

ifsinx, #&and 
/ 

Xz = 4~*{[(eX* - l)-2 - (err - l)-‘l/2 

+ [(ex* - 1)-s - (e*’ - l)-‘l/3) 

if sin xi = 0. where 

X(x) = ezx - 2e” cos x, + 1. 

At the inner radius, both equations give : 

x2, = - 0 

At the outer radius, equations (A. 1) and (A.2) give : 

2E2 1 - ek*cosx, 1 - ekccosx, 
22, = r - 

sm x1 X(k,) X(k,) 

ifsinx, #O,and 

Xle = 4EZ{[(e’* - l)-2 - (e’x - l)-‘$2 

+ [(e’s - 1)-3 - (e’& - 1)7131 

ifsinx, = 0. 


